
Journal of Statistical Physics, Vol. 95, Nos. 3�4, 1999

Collision Integrals for Attractive Potentials
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Motivated by previous discussions of particle interactions under the Manev
potential U(r)=&:�r&=�r2, we construct the collision integrals for attractive
potentials U(r) satisfying the condition U(r) r2 � &= as r � 0 with =�0. For
==0, we obtain a Boltzmann-type integral with a collision law allowing ``spiral''
interactions and nonunique correspondence between impact parameter and
scattering angle. For =>0, an additional Smoluchowski-type coagulation
integral arises. All these integrals are derived and possible applications are
discussed.

KEY WORDS: Attractive power potential; scattering angle; collision integral;
coagulation integral.

INTRODUCTION

In refs. 2 and 3, we investigated a Vlasov equation for the potential

U(r)=&
:
r

&
=
r2 , :, =>0 (0.1)

We referred to this Vlasov equation as ``Vlasov�Manev equation,'' after the
Bulgarian physicist Manev who studied this singluar type of correction to
the Coulomb potential in the 1920s. The properties of this Vlasov�Manev
equation, the local well-posedness of the initial value problem and the
general nonexistence of global solutions were the topic of the above men-
tioned references. We mention that potentials like (0.1) were studied by
others long before Manev, most notably by Newton in the Principia.
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Consider now a mollification of the potential U, i.e., let

U$(r)=U V |$

with |$(r)=(2?$)&3�2 e&r2�2$. For =<<$, one would expect the mollifica-
tion to suppress the effects of the =�r2 part of the potential relative to the
:�r part��the classical Vlasov equation (given by mean field effects) with a
small smooth perturbation in the potential would emerge. On the other
hand, if $=0, i.e., without any mollification of the potential, one should
also take pair collisions into account, i.e., the Vlasov�Manev equation
should be complemented by collision and (as we will show in this paper)
coagulation terms. For ==0 in (0.1), it is well-known that this leads to the
Landau�Fokker�Planck collision term, which is small near the Vlasov
limit (see ref. 4). A qualitative effect of pair collisions for ==0 is a ``very
slow'' relaxation to the local Maxwellian. Moreover, the collision term for
==0 does not depend on the sign of : in (0.1), i.e., there is no difference
between repulsive (say, electron-electron collisions in a plasma) and attrac-
tive forces in the collision integral.

The objective of this paper is to describe the effects of pair collisions
for =>0 in (0.1). We consider a more general context, namely, how to
construct the Boltzmann collision integrals for non-Coulomb attractive
forces. As we-will see, the collision integral does actually not make sense in
some situations; e.g., certain types of collisions for the potential (0.1) will
result in coagulation of two colliding particles, and such effects should be
accounted for. Here, coagulation is understood in the sense that point
particles may, on sets in phase space of positive measure, find themselves
at the exact same spot after finite time. For details, see Sections 2 and 3.

The paper is organized as follows. In Section 1, we consider the scat-
tering problem for an attractive potential U(r) such that limr � 0 |U(r)| r2

<�. Two new effects occur in this situation: (1) The possibility of ``spiral''
trajectories and non-unique correspondence between impact parameter and
scattering angle, and (2) coagulation for |U(r)| r2 � const. as r � 0. In
Section 2 we construct the Boltzmann collision integral for elastic attractive
scattering, while Section 3 contains the construction of the Smoluchowski
coagulation integral for the case of coagulation.

1. THE SCATTERING PROBLEM

We begin by recalling well-known facts from classical mechanics (see,
e.g., ref. 5). Consider the motion of a particle with mass m in the central

634 Bobylev and Illner



File: 822J 231303 . By:SD . Date:16:06:99 . Time:07:58 LOP8M. V8.B. Page 01:01
Codes: 1805 Signs: 1151 . Length: 44 pic 2 pts, 186 mm

Fig. 1. Scattering with a repulsive potential.

field U(r) such that U # C1(0, �) and U(r) � 0 as r � �. We assume that
the equation

U(r)+
M2

2mr2=E (1.1)

has exactly one positive solution r=r0 for any two positive constants M
(angular momentum) and E (energy).

In this section, we will emphasize vectors by using the classical arrow
superscripts to avoid notational problems. These arrows will be omitted in
Sections 2 and 3.

Let u� \ denote the velocities of a particle for t=\� (t is time), and
M=m\ |u� \ | be the absolute value of angular momentum. The number
\�0 is called an impact parameter. It is always possible to construct
a plane P with Cartesian cooordinates (x, y) such that u� &=[&u, 0],
u� +=[u$x , u$y], where u$2

x +u$2
y =u2. A potential is called ``repulsive'' if

U$(r)<0 and ``attractive'' if U$(r)>0. A typical particle trajectory in the
plane P is shown in Fig. 1.

For this trajectory, Mz=\u>0 (the generalization to the case
Mz=&\u<0 follows immediately by symmetry). We set u� +=u(cos .,
sin .) (see Fig. 1) and after standard calculations(4, 5) obtain an integral
formula

.=2\ |
�

r0

dr

r2
- 1&(2U(r)�mu2)&(\�r)2

(1.2)
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with (2U(r0)�mu2)+(\2�r2
0)=1 (from (1.1)). The identity (1.2) defines

. # [0, ?] as a function of \ for fixed energy E=mu2�2. Under simple and
natural conditions on the (repulsive) potential U(r) the function .(\)
increases monotonically from .(0)=0 to .(�)=?, such that the inverse
function \=\(.) exists. In the repulsive case, the scattering angle 0<%<?
between u� & and u� + is given as %=?&.. Let \~ (%)=\(?&%), then we
define a differential cross-section _(u, %) by

_(u, %)=
\~ (%)
sin % }

d
d%

\~ (%) } (1.3)

The function |u| _(u, %) is the appropriate kernel for the Boltzmann colli-
sion integral associated with the potential U(r) under consideration.(4) In
two dimensions, the function

_2(u, %)=
d

d%
\~ (%) (1.4)

plays the corresponding role.
To proceed, we have to make more specific assumptions on the poten-

tial U. We assume that U is such that

(A) U(r) # C1(0, �), U$(r)>0, U(r) � 0 as r � �;

(B) (d�dr)(r2U(r))�0, r2U(r) � &= as r � 0, with =�0.

Lemma. Let 9(r)=(2U(r)�mu2)+(\2�2r2). If (A) and (B) hold,
then the equation

9(r0)=1

has a unique solution r0>0 for any \>\
*

, where \
*

=(2=�mu2)1�2. There
are no solutions for 0<\<\

*
.

Proof. Let \>\
*

. Then 9(r) � � as r � 0 and 9(r) � 0 as r � �.
It is thus sufficient to prove that 9$<0 while 9(r)>0. To this end, assume
the opposite, i.e., that there is a r1>0 with 9(r1)>0 and 9$(r1)=0. Then

\2

r2
1

=
r1U$(r1)

mu2

and therefore

u9(r1)=
1

mur1

(r2U(r))$ | r=r1
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Fig. 2. Scattering with an attractive potential.

The right hand side is nonpositive because of (B), contradicting 9(r1)>0.
This proves the first part of the assertion (for \>\

*
, =�0). For \<\

*
with =>0 (B) implies that U(r)�&=�r2, and it follows that 9(r)�0 for all
r>0 in this case.

In the sequel we shall always assume that (A) and (B) are satisfied.
The integral formula remains valid, but the correspondence between \ and
. is not unique anymore. Typical trajectories for this situation are shown
in Fig. 2 (the scales are different in the two pictures; the collision parameter
\ is smaller in the second case).

Intuitively, one expects in this situation that .$(\)<0, .(�)=?, and
that there is a critical collision parameter \c , positive or zero, such that
lim\z\c

.(\)=.max>?. .max can be infinite.
Let us now consider a power-potential

U(r)=&
:
r# , :>0, 1�#<2 (1.5)

Formula (1.2) becomes

.=2\ |
�

r0

dr

r2
- 1+(s�r)#&(\�r)2

, with s#=
2:

mu2 (1.6)

or, from (1.2),

.=.(z)=2 |
x0

0

dx

- 1+zx#&x2
(1.7)

with z=2:�mu2\# and 1+zx#
0&x2

0=0.
Let #=2&1�n, n=1, 2,..., then the substitution x=(zy)n leads to

.(z)=2n |
y0

0
dy[z&2ny2&2n+ y(1& y)]&1�2 (1.8)

with y0(1& y0)+ y2&2n
0 z&2n=0.
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Fig. 3.

If z � �, i.e., \ � 0, then

.(z) � .max=2n |
1

0

dy

- y(1& y)
=2n? (1.9)

Hence simple trajectories (i.e., ?<.<2?) occur only for n=1 (the
Coulomb or Newtonian potential), while in the general case n=2, 3,... we
get spiral trajectories with (n&1) loops. The dependence .(\) for n=3 is
depicted in Fig. 3. This figure, as all others in this paper, were produced
with the MAPLE symbolic computation package.

To compute the scattering angle % # [0, ?] between the velocities u� &

and u� + , we observe the following elementary geometric relationship
between . # (?, �) and % # [0, ?] (see Fig. 2, where k=1):

if (2k&1) ?�.�2k?, then %=.&(2k&1) ?, and

if 2k?�.�(2k+1) ?, then %=(2k+1) ?&. (1.10)

For attractive potentials U(r) such that r2 |U(r)| � 0 and r � 0, the
formulas (1.2) and (1.10) define the scattering angle % uniquely as a func-
tion of the impact parameter \ # (0, �).

We next consider the scattering problem for the potential

U(r)=&
=
r2 , =>0 (1.11)
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For this case, the integral (1.2) gives the simple explicit formula

.=? _1&\\
*
\ +

2

&
&1�2

, with \2

*
=

2=
mu2 (1.12)

for \>\
*

. Note that . � � as \ decreases from � to \
*

.
If \<\

*
, then the particle ``falls into the center r=0.'' To analyse this

further, observe that the scattering problem appears initially from a reduc-
tion of the two body problem. Consider two particles with masses mi ,
positions x� i and velocities v� i (i=1, 2), interacting via the potential
U( |x� 1&x� 2 | ). A standard transformation to the center-mass frame of
reference,

X9 =
m1x� 1+m2x� 2

m1+m2

, x� =x� 1&x� 2

(1.13)

V9 =
m1v� 1+m2v� 2

m1+m2

, u� =v� 1&v� 2

reduces the two-body problem to the problem of one body (with mass
m=(m1 m2)�(m1+m2), position x� and velocity u� ) in the central field
U( |x� | ). It is well known(5) that for the potential (1.11) a global (in time)
solution of the two-body problem does not exist for sufficiently small
(\<\

*
) relative angular momentum. For given initial conditions

x� (0)=x� 0 , u� (0)=u� 0 , x� 0 } u� 0<0, E=
mu� 2

0

2
&

=
|x� 0 |2<0

(1.14)
M2=m2[x2

0u2
0&(x� 0 } u� 0)2]<2=m

there exists a time instant t0 # (0, �) such that

x� (t) � 0, |u� (t)| � � as tZt0

(this is best seen by noting that E is the time-invariant energy for the
system in the x� , u� coordinates, and that (d 2�dt2)(mx� 2)=4E<0). The ques-
tion arises how the solution of the two-body problem should be continued
for t>t0 . A natural way to do so is to assume that the two particles simply
coagulate at t=t0 , i.e., they form a heavier particle with mass M=m1+m2

and velocity V9 . This guarantees momentum conservation, while there is in
general a loss of energy (the kinetic energy of the ``new'' particle is smaller
than the total mechanical energy (kinetic plus potential) of the two par-
ticles at t=0). This corresponds to the implicit assumption that the new
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heavier particle possesses internal energy which, however, is irrelevant for
our purposes.

We emphasize that this coagulation concept destroys the conservative
character of the system, as energy is not conserved. We also hasten to add
that the coagulation process is different from the type of coagulation
encountered in chemical separations and recombinations; indeed, our par-
ticles are to be thought of as dimensionless ``black holes'' which interact
under the strongly singular attractive potential under consideration.

Summarizing, we describe collisions between two particles with masses
mi , i=1, 2 and velocities v� i , i=1, 2 before the collision and interacting
with the potential (1.11) as follows. If the impact parameter \ satisfies
\>\

*
(see (1.42)), then an elastic scattering with scattering angle

% # [0, ?] given by (1.10) and (1.12) occurs. If \<\
*

we have a coagula-
tion, i.e., the collision results in the formation of a heavier particle with
mass M+=m1+m2 and velocity V9 =(m1v� 1+m2 v� 2)�M+ .

This analysis of the pair collision process applies not only to the
potential (1.11), but also to other potentials U(r) for which U(r) r2 � &=
as r � 0. The only difference is that instead of the simple formula (1.12)
one has to employ the general integral formula (1.2) to describe elastic
scattering for \>\

*
.

If \<\
*

, then particles coagulate in the same way independently of
the specific form of the potential; only the behavior for r � 0 matters.

In particular, for the potential

U(r)=&
:
r
&

=
r2 (1.15)

with :, =>0, the integral (1.2) can be calculated in explicit form as

.=_?+arctan
:

mu2
- \2&\2

*
&_1&\\

*
\ +

2

&
&1�2

(1.16)

where \>\
*

and \2

*
=2=�mu2.

The purpose of this section was to collect all necessary calculations for
the scattering problem. We are now ready for the construction of collision
integrals for attractive potentials.

2. COLLISION INTEGRALS FOR ELASTIC SCATTERING

To simplify our notation, we now denote vectors without the arrow
superscript.
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Consider a repulsive pair potential defining a scattering cross-section
as discussed in Section 1. If f =f (x, v, t) is the particle density of a rarefied
gas, the collision term for the Boltzmann equation is

|
R3_S2

dw dn _( |u|, ,) |u| [ f (v$) f (w$)& f (v) f (w)] (2.1)

where u=v&w, the arguments x and t have been suppressed, and the post-
collisional velocities v$ and w$ are given by

v$= 1
2 (v+w+|u| n), w$= 1

2 (v+w&|u| n)

Here, n=(sin % cos :, sin % sin :, cos %), dn=sin % d% d:, 0�%�?, 0�:�2?.
We now generalise the collision integral (2.1) to the case of attractive

potentials. To start, we write (2.1) in the more compressed form

I( f, f )(v)=|
R3

dw |v&w| 9 \v+w
2

, v&w+ (2.2)

with

9(V, U )=|
S 2

dn _( |U|, _)[F(V, |U| n)&F(V, U )] (2.3)

and F(V, U )= f (V+(U�2)) f (V&(U�2)).
Note that the original form of the Boltzmann collision integral

includes an integration over the impact parameter \ # (0, �), and not over
the scattering angle %. With the integral over \ and (1.3), the integral in
(2.3) becomes (we omit the argument V )

9(U )=|
�

0
d\ \ |

2?

0
d:[F( |U| n)&F(U )] (2.4)

where n # S2 is still defined as before, but a polar scattering angle % is now
a function of \ as defined by the scattering problem which we discussed in
Section 1. If the intermolecular potential U(r) is positive and monotoni-
cally decreasing with r, we have a one-to-one correspondence between
0�%�? and 0�\<�, and (1.3) defines the relationship between (2.3)
and (2.4).

In the sequel we consider the integral (2.3) for attractive potentials
when the dependence between \ and % is given by the formulas (1.2) and
(1.10). We assume monotone dependence between \ and ., as indicated in
Fig. 3.
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To simplify our notation, we write the integral (2.4) in the compressed
form

9(U )=|
�

0
d\ \G[%(\)] (2.5)

with G[%(\)]=�2?
0 d:[F( |U| n)&F(U )], where n=(%(\), :) is given in

spherical coordinates with the polar axis in direction U. Using (1.2), we
define \n , n=1, 2,..., by \1=� and .(\n)=n?, n=2, 3,... . If there is a
.max such that .(\) � .max as \ � 0, and if we set .max=N?+.0 with
0�.0�?, we set \n#0 for n>N. Using (1.10), we rewrite (2.4) as

9(U )= :
�

k=1
{|

\2k&1

\2k

d\ \G[.(\)&(2k&1) ?]

+|
\2k

\2k+1

d\ \G[(2k+1) ?&.(\)]= (2.6)

.(\) being defined in (1.2).
Let

\~ (2k)(%)=\[(2k&1) ?+%], k=1, 2,...
(2.7)

\~ (2k+1)(%)=\[(2k+1) ?&%], k=1, 2,...

0�%�?. We remark that the inverse function \(.) exists in view of our
assumption that .(\) is strictly monotone.

It is now natural to introduce a set of ``partial'' differential cross
sections (see (1.3) for comparison)

_n(%)=
\~ (n)(%)
sin % } d

d%
\~ (n)(%) } , n=2, 3,... (2.8)

and to set \=\~ (2k)(%) or \=\~ (2k+1)(%) in each of the integrals in (2.6).
Returning to the integration variable % # [0, ?], the result is

9(U )=|
?

0
d% sin %F(%) _̂( |U|, %) (2.9)

with

_̂( |U|, %)= :
�

n=2

_n( |U|, %) (2.10)
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If .max<�, the sum in (2.10) is actually a finite sum. For example,
_n( |U|, %)=0 for n=3, 4,... for the Newtonian potential (1.5) with #=1,
while _2( |U|, %) is merely the classical Rutherford cross-section in this case
(the integral (2.5) is then actually divergent, a fact we ignore for the current
formal discussion).

The partial differential cross-sections _n(%) in (2.8) allow the following
physical interpretation: Each function _n(%) is associated with the relative
contribution of those trajectories which have exactly n&1 intersections
with a real axis directed along U.

To summarize we obtain for an attractive potential U(r) the usual
Boltzmann collision integral (2.1), provided that |U(r)| r2 � 0 as r � 0. The
only difference is that we have to use a generalized differential cross-section
_̂( |U|, %) as given by (2.10) to replace the usual cross-section _( |U|, %).

We now discuss the important case when |U(r)| r2 � =>0 as r � 0
beginning with the simplest case (1.11). Elastic scattering is again described
by the Boltzmann collision integral in the form (2.2)�(2.4), provided that
we integrate over d\ in (2.4) not from 0 to �, but from \=\min=\

*
(as

given by (1.12)) to �. All the above arguments carry over. Inverting the
explicit formula (1.12), we find

\2=\2

*
[1&(?�.)2]&1 (2.11)

hence

\
d\
d.

=&
\2

*
?2

.3 [1&(?�.)2]&2=&
(?\

*
)2 .

[.2&?2]2 (2.12)

From (2.7), (2.8)

sin % _2k(%)=(?\
*

)2 (2k&1) ?+%
[[(2k&1) ?+%]2&?2]2

(2.13)

sin % _2k+1(%)=(?\
*

)2 (2k+1) ?&%
[[(2k+1) ?&%]2&?2]2

k=1, 2,... . The formulas (2.10) and (2.13) (note that the convergence in
(2.10) is straightforward) define a generalized elastic cross-section _̂( |U| , %)
for the potential U(r)=&=�r2, =>0. We also observe that _2(%) diverges as
% � 0.

The potential given by (1.15) can be treated in much the same way.
The only difference in the construction of _̂( |U|, %) is that one has to sub-
stitute (1.16) for (1.12) in the analysis. As (1.16) cannot be inverted
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explicitly, one has to use numerical analysis to compute _̂ in this situation.
No conceptual difficulties arise; in particular, convergence of the series
(2.10) holds because the second term in (1.15) dominates as n � �.

We end this section with two remarks.

Remark 2.1. The Boltzmann collision integral with cross-section
(2.10) readily generalizes to the two-dimensional situation. To this end, all
one has to do is substitute the formula (1.4) for (1.3) and repeat the above
calculations.

Remark 2.2. Another generalization applies to the situation where
particles have different masses. Let fi (x, v, t) be the densities associated
with particles with mass mi , i=1, 2. The Boltzmann equation for f1 will
read

�t f1+v } {x f1=I( f1 , f1)+I( f1 , f2) (2.14)

We have already discussed the first collision term in (2.14). As for the
second one, it can be rewritten analogously to (2.2):

I( f1 , f2)=| dw |v&w| 9 \m1v+m2w
m1+m2

, v&w+ (2.15)

where 9( } } } ) is defined as in (2.3) with

F(V, U )= f1 \V+
m
m1

U+ f2 \V&
m
m2

U+ (2.16)

and m=m1m2 �(m1+m2) is the reduced mass. This reduced mass also has
to be used in (1.2). All other calculations apply without changes.

3. BOLTZMANN�SMOLUCHOWSKI COLLISION INTEGRALS

We again consider first the potential

U(r)=&
=
r2 , =>0 (3.1)

As discussed at the end of Section 1, a classical solution of the scattering
problem for this potential exists only for sufficiently large impact param-
eters \2>\2

*
=2=�+u2 and reduced mass +=(m1m2)�(m1+m2). If \<\

*
,

we have to consider a generalized solution of the scattering problem which
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incorporates a coagulation process. A consequence is that we have to con-
sider particles with different masses in any case, because particle masses
change in the collision (coagulation) process. It therefore becomes
necessary to consider particle masses as an additional independent variable
and derive kinetic equations for a distribution density f (m, x, v, t), where
m>0 denotes the particle mass.

The total particle mass is then given by the formula

M=|| dx dv |
�

0
dm f (m, x, v, t) (3.2)

We assume that a pair collision with an impact parameter \<\
*

results in
coagulation of particles, i.e., in the ``reaction''

(m1 , v1)+(m2 , v2) � (M, V ) (3.3)

with M=m1+m2 , V=(m1v1+m2v2)�M. Note that the postcollisional
velocity V does not depend on the impact parameter \ provided that
\<\

*
. The coagulation process is therefore completely determined by a

total coagulation cross-section

_c(u; m1 , m2)=?\2

*
(3.4)

The time which is needed for a typical scattering or coagulation event
is assumed to be negligible with respect to the macroscopic time scale.

We have to distinguish the following two possible cases:

(1) The pair potential U(r) (e.g., the constant = in (3.1)) does not
depend on the masses m1 and m2 of the colliding particles

(2) Or, there is such a dependence. We then write U(r; m1 , m2).

In the sequel we consider the more general situation (2). An elastic dif-
ferential cross-section can then be calculated in the same way as described
in Section 2, by using the mass-dependent potential U(t; m1 , m2). For
example, let us set ===(m1 , m2) in (3.1). We then set

\2

*
=

2=(m1 , m2)(m1+m2)
m1 m2 u2 (3.5)

in (2.13) and calculate a differential cross-section _̂(u, %; m1 , m2) by the
formulas (2.10)�(2.13). A change similar to (3.5) has to be made in (3.4) for
a total coagulation cross-section _c(u; m1 , m2).
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If we do not consider the simple potential given in (3.1), but a more
general attractive potential U(r; m1 , m2) such that

|U(r; m1 , m2)| r2 � =(m1 , m2) (3.6)

as r � 0, then no changes arise in (3.3)�(3.5) (the coagulation condition
remains the same), while all details of calculating the elastic cross-section
_̂(u, %; m1 , m2) have already been presented above.

We are now ready to write the Boltzmann�Smoluchowski equation for
a distribution density f (m, x, v, t):

�f
�t

+v } {x f =IB+ISm (3.7)

where IB and ISm denote the Boltzmann and Smoluchowski collision
integrals, respectively. We assume that particles interact via an attractive
pair potential U(r; m1 , m2) satisfying the condition (3.6). First calculate
cross-sections _̂(u, %; m1 , m2) and _c(u; m1 , m2) as described earlier. Then

IB=|
�

0
dm1 |

R3_S2
dw dn |U | _̂( |U |, %; m, m1)

_[ f (m, v$) f (m1 , w$)& f (m, v) f (m1 , w)] (3.8)

with U=v&w, U } n=|U | cos %, v$=V+(+�m) U } n, w=V&(+�m) U } n,
V=(mv+m1w)�(m+m1), +=(m1m)�(m1+m). This is the obvious
generalization of the usual Boltzmann collision integral for particles with
different masses.

The Smoluchowski collision integral is

ISm=
1
2 |

�

0
dm1 |

�

0
dm2 |

R3_R3
dv1 dv2 |U | _c( |U |; m1 , m2)

_ f (m1 , v1) f (m2 , v2) $(m1+m2&m) $ \m1v1+m2v2

m1+m2

&v+
& f (m, v) |

�

0
dm1 | dw f (m1 , w) |v&w| _c( |v&w|; m1 , m2) (3.9)

with U=v1&v2 . The factor 1�2 in front of the first integral gives the
correct number of inelastic collisions. We have omitted the arguments x
and t throughout.
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The potential U(r; m1 , m2) and the cross sections _̂( |U |, %; m1 , m2) are
symmetric functions of the masses m1 and m2 . The first term on the right
of (3.9) can be simplified further, but the present form is advantageous for
the calculation of inner products

(�, ISm)=|
�

0
dm |

R3
dv �(m, v) ISm(m, v)

with test functions �. After some elementary transformations, one finds

(�, ISm)=
1
2 | dm1 | dm2 |

R3_R3
dv1 dv2 f (m1 , v1) f (m2 , v2)

_|U | _c( |U |; m1 , m2) _� \m1+m2 ,
m1 v1+m2v2

m1+m2 +
&�(m1 , v1)&�(m2 , v2)&

U=v1&v2 , from which conservation of mass and momentum readily
follow:

(m, ISm)=0=(mv, ISm)

The dependence of the Smoluchowski integral on the relative speed
|U | has universal character as follows from the formulas (3.4)�(3.5),
provided that condition (3.6) holds.

We conclude by presenting explicit formulas for the simplest case
(3.1), assuming that = in (3.1) depends on the masses. Let (see (2.10�(2.13))

g(%; m1 , m2)=2
?2=(m1 , m2)(m1+m2)

m1m2

g(%)

sin % g(%)= :
�

k=1
{ (2k&1) ?+%

[[(2k&1) ?+%]2&?]2+
(2k+1) ?&%

[[(2k+1) ?&%]2&?]2=
p(m1 , m2)=2

?=(m1 , m2)(m1+m2)
m1 m2

(3.10)

The collision terms in (3.7) then become

IB=|
�

0
dm1 |

R3_R3
dw dn

g(%; m1 , m2)
|v&w|

_[ f (m, v$) f (m1 , w$)& f (m, v) f (m1 , w)] (3.11)
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and

ISm=
1
2 |

m

0
ds |

R3
du

p(s, m&s)
|U |

f \s, v+
s
m

U+ f \m&s, v&
m&s

m
U+

& f (m, v) |
�

0
ds | dw

p(m, s)
|v&w|

f (s, w) (3.12)

where v$ and w$ are defined after (3.8).
Remarkably, in the two-dimensional case (x, v # R2) the potential (3.1)

results in a collision integral of Maxwell type (i.e., the collision kernel
(cross-section) becomes independent of the relative speed), which can be
significantly simplified by use of the Fourier transform (see, e.g., ref. 1). We
present the explicit formulas for the collision integrals. Setting

g2(%; m1 , m2)=?2 _2
=(m1 , m2)(m1+m2)

m1 m2 &
1�2

g2(%)

g2(%)= :
�

k=1

[[((2k&1) ?+%)2&?2]&3�2

+[((2k+1)&%)2&?2]&3�2]

p2(m1 , m2)=2 _2
=(m1 , m2)(m1+m2)

m1m2 &
1�2

the collision terms in (3.7) become

IB=|
�

0
dm1 |

R2
dw |

+?

&?
d% g2( |%|; m1 , m2)

_[ f (m, v$) f (m1 , w$)& f (m, v) f (m1 , w)]

ISm=
1
2 |

m

0
ds |

R2
dU p2(s, m&s) f \s, v+

s
m

U+ f \m&s, v&
m&s

m
U+

& f (m, v) |
�

0
ds |

R2
dw p2(m, s) f (s, w)

with v$ and w$ given as in (3.8), provided that v, w # R2 and n=
[cos %, sin %], &?<%<?.

We finally remark that for the potential (1.15) the Smoluchowski
integral remains exactly the same as for the potential (3.1), i.e., it is given
by the formulas (3.11�12). For this potential, the Boltzmann collision term
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has to be calculated as described in Section 2 from formula (1.16) with a
proper regularization for \ � �. If = in (1.15) is sufficiently small, the con-
tribution of the second term in elastic collsions should be negligible, and
the standard Landau�Fokker�Planck collision integral for pure Coulomb
interactions should emerge. However, in some situations the Smoluchowski
collision term should be important even when = is small, because new
qualitative effects like cluster formation are possible.
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